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NONREFLEXIVE SPACES OF TYPE 2

BY
R. C. JAMES

ABSTRACT

The nonreflexive and uniformly nonoctahedral spaces X, are known to be of
type p if 1 = p <2 and p is sufficiently large. It is shown that X, is of type 2 if
p>2.

A Banach space X is of type p if there is a constant C such that, for any choice
of {x': 1=i=n}in X, we have
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where the summation is over all sequences o of n signs. It will be shown that
there are nonreflexive spaces of type 2. The question of a relation between
reflexivity and “‘type 2” was raised in [1, p. 646]. Davis and Lindenstrauss
showed that for each p <2 there is a nonreflexive space of type p [2, theor. 3, p.
193]. Kwapiert showed that a Banach space X is isomorphic to a Hilbert space if
it is of type 2 and cotype 2 [6, theor. 1]. Pisier established a stronger result [10,
prop., p. 348], which implies that X is super-reflexive if X is of type 2 and there
is a sequence {C,} such that lim,_...C, In n = « and, for each n and any choice of

{x':1sisn}in X,
|(3=¢) J= a(S1xr)

The first nonreflexive spaces known to have type greater than 1 were the
uniformly nonoctahedral spaces given in [4]. The definition of these spaces was
improved considerably in [5, p. 104]. With only a rather superficial change, this is
the definition to be used here. The change yields a minor improvement in the
coefficient of n? in inequality (18).
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It is an unpublished result of G. Pisier that a Banach space is of type 2 if it is of
“equal-norm type 2”, i.e., if (1) is satisfied when p =2 and ||x‘[|=1 for each i.
Using equal norms is of vital importance for the methods of this paper.
Therefore we include the following proposition.

ProrosiTION (Pisier). A Banach space X is of type 2 if there is a constant C
such that, for any choice of {x': 1=i=n} in X with ||x'||=1 for each i,

22'2

Proor. If follows from Proposition 5 of [9] that if {g:} are independent
Gaussian random variables with means 0, then X is of type 2 if and only if there
is a constant D such that, for any choice of {x': 1=i=n}in X,

f dt = D(z Ix'F)

If (1) is satisfied for equal norms, and {g;} are independent normalized Gaussian
random variables, then by repeating x’’s it follows from the central limit
theorem that

= Cnt.

1/2

>, gi(0)x'

dt = Cn},

IS

if |x']|=1 for 1 =i = n. Now suppose that {x': 1=i=n} are given and that
|x*]l= p: /N for each i. Let x; = Nx'/p; for 1 =j = p?, and let {g;} be indepen-
dent normalized Gaussian random variables. Then

f_: dt= C(ép?)

The coefficient of x' in the integrand is N(Z%, g;)/p.. Thus if G = (Z%,g:)/p.
then {G.} are independent normalized Gaussian random variables and

J. asg(e) - c(S1r)"

which implies X is of type 2.

172

'21: gi(t)x;

By a bump we mean any function which is equal to some nonzero constant on
an interval of positive integers, and is equal to 0 at all other positive integers.
This constant is the altitude of the bump. Two bumps are said to be disjoint if the
intervals on which they are nonzero are disjoint. For 1 <p <, define a
functional [ | on the set of sequences with finite support, letting
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where x = Z7.,x* and each x* is the sum of r, disjoint bumps whose altitudes
have absolute value h, (in [5] it was required that the bumps in r. all have the
same altitude). The functional [ ] does not satisfy the triangle inequality, so we
let

||x||=inf{§l[[x"]]: x= zlx"}.

The completion with respect to this norm of the space of finitely supported
sequences will be called X,. As observed in [4, p. 150] and [5, pp. 101-102], it is
easy to see that X, is not reflexive.

To prove that X, is of type 2 if p > 2, it is helpful to prove three lemmas in
preparation. The three-dimensional version of Lemma 1 contains essentially the
same arguments as used in [5, p. 105]. When n is given, we shall let A, denote
the average over the 2" possible arrangements o of n consecutive signs.

LemMma 1. For each n, a sufficient condition that

(=),

for any choice of {x': 1=j=n} in X, with each |[x'||=1, is that there exist
nonnegative numbers {¢:(n): i = N} which have the two properties:

(i) =L [ndi(n)]"*<K;

(i) if each &',1=j = n, is the sum of r; disjoint bumps of altitudes +1 or —1
with each r, = 0, then it is possible to have, for each o,

where each & is the sum of disjoint bumps of altitudes + 1 or — 1 and, if F: is the
average over o of the number of bumps in ¢, then

) A,

|<K,

) = ¢i(n)2 r,  for each i.

Proor. By the same arguments used in [5, pp. 102-103], it is sufficient to
establish (3) with || || replaced by [ ] and [x’] =1 for each j. As noted in {5, pp.
104-105], it follows from the telescoping nature of the bracketed terms in (2) that
there exist numbers m and {h,: 1 = u = m} such that, for each x’, there exists a
finite sequence of non-negative integers {r,;: 1 = u = m} such that
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=1 = 3 (S m) - (3 m)],
p=1 k=pn k=p+1
where x/ = 3., £ and each £/ is the sum of r,; disjoint bumps whose altitudes
have absolute values h.. Now use (ii) and obtain, for each u and o,

PEAED R

where each £, is the sum of r., disjoint bumps whose altitudes have absolute
values h,, and

) Fo= ¢(n)2 r.,; for each p and j,

where 7. is the average over o of r.,. For each o, we have

($20) - [8+(2e)] - 5520,

=1 j=1 =1 p=1 \j=1
-3 (Ge) -2 (5 en)
n=1 \i=1 i=1 \p=1
Thus it follows from the triangle inequality and convexity of ¢* that

a|E =) =24 e

i=1 p=1

<3

i=]

(6) N
Al Y e

=GR - (2]

it follows from (6) and (5) that

B=o) =S5 Em - (ST
52{2[‘1’ ,2, ][(Ehk) (ki,"k)P]}”p
SlowsgallS (50"

k=p+1

Since, for each i, we have

"2 el

uw=1

A,

= 3. [n(m)]* < K.
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The following inequality (7) is neéded for Lemma 2. Let
k
Pr=2"3 (")
i=0

By using the equality P§ = (P23 + 2P+ P:7%), it is not difficult to prove for
n =5 that

1 N
h when v
n 1, —(n=-2kY@2n)"1 - o5 nis even,
P <ie if k<
¥n—1), when n is odd.

If we let n — 2k = k and let £ be 1 or 2 according as n is odd or even, then for
any positive p and n = 5, we have

(1/2)n-1)) {(1/2Xn—D)]
i (P:)I/p < 2-Ve, ~{n=2k )Y (2np)-t
k=0 k=0
0 - $ 2wt <[ oy
x=g 0
1 172

o -1/p, 1/2
= (2 ﬂp) 27n ',

where the error in approximating P§ when n is odd and k =i(n — 1) is more
than balanced by the integral approximation. If n = 4, inequality (7) becomes
({&)'7+ ()" < @mp)"?27%2, or (3)"/°+ ()" <2(mp)'”?, which clearly is true if
p =2

LEmMMA 2. Suppose C and {A(n): n = 1} are positive numbers such that, for
each n, there exist positive numbers {¢;(n): 1=i = N(n)} for which

Nn) .
(8) 21 [n¢i(n)]1/p§ Cn2+A(,,)’
and (ii) of Lemma 1 is satisfied for X,. Then for each n >4 and each a with

0=a <1 for which n* is an integer, there are positive numbers {¢pi(n): 1=i =
N'(n)} such that (ii) of Lemma 1 is satisfied for X,, and

(9) N§) [n¢'.(" )]llp < 31/9Cn ald+ame)+(i-a)p + 61/, (% 1Tp> lﬂnéﬂl—u)/n_
i=1

Proor. Let each &/, 1 =j = n, be the sum of r; disjoint bumps with altitudes
+1or —1, where each r, 2 0. The norm for X, is repetition-invariant, meaning
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that | x || depends only on the distinct numbers used as components of x and their
order, but is independent of repetitions of a number. Suppose two bumps have a
common endpoint and one bump is stretched or shrunk to the next integer and
this integer is not the endpoint of any bump. When representing (£,+ ¢’), as
2:£., this cannot decrease the number of bumps needed in the various £ ’s. Thus
there is no loss of generality in proving Lemma 2 with the assumption that no
two bumps among all those involved in the various £’s have a common
endpoint. Since there are then 227, r, endpoints, there is an interval I which
contains the support of each ¢’ and is the union of (22}, r,) — 1 intervals on each
of which each ¢’ is constant.

For an arbitrary a for which 0= a <1 and n* is an integer, partition I into
intervals {I, } such that each I, is the union of at most n* consecutive intervals on
which each ¢’ is constant. If n* <Z7_;r, we can have

Ziﬁ 3in

(10) 1§k<1+—’;+<*’:;“-
If n* = X} 1, let the partition consist only of I itself. Now choose two sets A
and B of vectors as follows. If n®=27_,r, let A={¢} and B=(. If
n* < X, we define, for each vector ¢/, a vector ' in A and ¢’ in B. For each
J> let 7’ be the sum of all bumps with the property that each bump either is a
bump of ¢ whose support is a proper subset of some I, or it is the part of a
bump of ¢’ that extends into but not across some I, i.e., if I, is not contained in
the support of £/, then ¢ and n’ have the same intersections with the
characteristic function of I.. Then let {' = ¢/ — n’. Note that either 9’ or {’ or
both might be 0.

Since no two bumps involved in the various ¢’’s have a common endpoint, and
each bump of an 7’ that has a point of support in I is constant on at least one
subinterval of I, at most n® vectors in A have their supports in the same I, and
those with support in Ic have a total of at most n® bumps. Therefore, we can
have

n N(n®)
( tn,{) = 2 ni. for each k,
j=1 o

1=1
where n/ is the restriction of n’ to I, and also have
11) Si=¢i(n)ne, if ne <2,
j=1

and
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II/\

(12) n") 57 "z
where 5. is the average over o of the number of bumps in 7. Now let
N+ = Z«ni, for each i. Then

n N{n=)
(2 * 17') =2 Mo
i=1 o i=1
If § is the average over o of the number of bumps in 7, then it follows from (10)
and (11) that

S
(13) 5 =3¢:(n" )n“lL 3¢i(n” )2 r,

if n* <Z,r. Because of (12), inequality (13) is valid when n* = 2,1, even if
the “3” is deleted.

Each of the n or fewer vectors in B is the sum of bumps of altitudes + 1, or
— 1, each having as support a union of consecutive I,’s. We will now choose {{}
so that, for each o,

(14) (Z20) =3¢

with each {; the sum of bumps with altitudes +1 or —1. For 1=i=n, let ¢!
have value 0 in all intervals I, for which |(Z]-, = '), |<n —i + 1, and otherwise
let £, have value +1 or —1 according as (-, +¢'), is positive or negative.
Then (14) is satisfied.

If exactly m of the {’’s are nonzero on I, then the number of arrangements of
signs o for which {, is nonzero on I is 2" times the probability that n — i + 1 is
less than or equal to the absolute value of the difference between the number of
successes and the number of failures in m Bernoulli events with probability 3.
This probability does not decrease by more than } if m is replaced by n. Thus, if f;
is the average over o of the number of bumps in ¢, then it follows from (10) that

(15) _ (3)*@* ([:(i >'32’;

f<4 > o

Wenow have (/- x'), = 9"y [ + 7., L Also, there are N(n*)+ n new
&:’s, which we denote by {¢i(n): 1 =i = N(n*)+ n}, and choose by use of (13)
and (15) so as to satisfy (4). Then
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Sin- ¢l s > [3n- din)"

i i=]1

+3 [lzn(f;)* () m)]

2nna

i=1
N(n<*)
= 3Vey(-aVe Z [natbi(n")]w

R [(8) ) (g 1)1)]%.

2"

i=1

The first of these summations (without its coefficient) is by hypothesis not greater
than Cn°#2¢"} The second summation is less than (2mp)27*nt if n = 4, since
it is not greater than 2S{2"~"(P})""*, which (7) implies is less than (2mp )227"/*n?.
Thus

z [n¢ z(n)]llp < 31/ana[§+A(na)]+(1-a)/p + 6l/p(27rp )%n%+(l~a)/p'

LeEMMA 3. Let n >4 be a positive integer. Suppose C and {A(k): 1=k <n}
are nonnegative numbers, and that there exist nonnegative numbers {¢:(k)} for
each k < n which can be used in Lemma 1 to verify that, if | x'|| =1 for each j,

then
(=)

If 0=a <1 and n° is an integer, then there exist nonnegative numbers {¢i(n)}
which can be used in Lemma 1 to verify that, if |x'||=1 for each j, then

(2=,

Proor. This Lemma is an immediate consequence of Lemmas 1 and 2.

= Ck +ak)

(16) A,[

(17) A, < 31/pcna[é+A(na)l+(l—a)/p+ 6l/p(27rp )éné-o-([—u)/‘,.

THEOREM. The space X, is of type 2 if p >2. Moreover, for each n and any
{x!:1=j=n}in X, with ||x'||=1 for each j, we have

(18) A«I

(i + xl‘) ,‘l = [3(p+l)/(p_2)(2e)l/g(%7rp )%]"é-

j=1

For X, and any 6 >0, there is an n, such that
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1 .
ny’ny, if n=n,

(19) A.,” (2 !

1 .
6(3en, Jintro/tntnml gy s

PrOOF.  Assume first that p > 2. Introduce the functions 8 and A defined for
n >3 by

(0) By = LRI o aen  gonare,

plnn

@1 Afn) = —P—B( )+

p]nn

and B(n)=A4(n)=0 if n =3. We will show that if n =4 and if x/ € X, with
[x7]|=1 for 1=j=n, then

22)

2": H 21/p( Wp)§n§+A(n).

Since n ™ = 3¢*D/C 2 2 this will establish (18) for n = 4. Since ||(Z1+ x/), || =
n if[[x’ [ = 1 for each j, and the right member of (18) is greater than 3n? if p>2,
we see that (18) is valid if n < 4.

We will establish (22) for n > 4 by induction. In order to use Lemma 3 in the
first step of the induction, we need to know that there exist {¢i(n)} for n =4
which can be used in Lemma 1 to establish (22) for n =< 4. If we let ¢i(n)=1for
I=i=nandn=120r4 andlet $;(3)=i"'for 1 =i =3, then (ii) of Lemma 1
is satisfied and we need to have, for n =4 and p>2,

”

(23) E n¢ (n)]1/p<2l/p( Wp)2n2+A(,.)

This is satisfied for n =1, since 1<2"°3mp)}; for n =2, since 2-2Y°<
2Vedmp )2, for n =3, since 31+ 277 4 37YP) < 22 p 3t follows from
1+2777 4372 < 2" (4mp}; and for n = 4, since 4-4'° < 3e V=D e Y P Gap 2.
Now suppose n >4 and for each k < n there exist nonnegative numbers {&:(k)}
which can be used in Lemma 1 to verify that (22) is valid if n is replaced by any
positive integer k < n. The principal technique in the proof is to choose C in (16)
by letting

(24) C =2"}mp),

and then using Lemma 3 after making each exponent of n in (17) less than or
equal to
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(25) :+A(n)=B(n).

This will imply that (22) is satisfied, since n ™™ =3""""¢ and
37310 + 62 2mp Y] = C.

For the second exponent of n in (17) to be less than or equal to (25), we need

26) a = 1+p[B(n)~ An)].

For the first exponent of n in (17) to be less than or equal to (25), we need

27) %a+17§ FA(m)-B(n) if no =3,
and
(28) a[%+A(n“)]+IT<%+A(n) B(n) it n=>3.

Since A(n*) = A(n)/a, these are equivalent, respectively, to

@) as1H2oAm) - p(n)] it ne =3,
(30) agl—p—z_%ﬁ(n) if n®>3.

Since (29) is satisfied if @ < 1, the inductive proof is completed for all n for which
a can be chosen so that n* = 3 and a satisfies (26). That is, for all n such that

(1) ptrelBe-aml < 3

which is true if n - n ™2 <3 Since nf™ = 3" this is satisfied if
(32) n = 3%

Now assume that n > 3*"®"?_ Because

(33) R = p* >1+n* if x =0,

there is an « that satisfies both (26) and (30) and also satisfies 0 = a <1 and the
requirement that n® be an integer, if

(34) [1-52580)| -1+ o8 -2 2 1

and also
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1

Inn

(35) <1——"—B(n)

Because of (21), (34) is an equality. Write (35) as

Since the inequality, Inn >1n3+2(1+ p)}(p —2)"'In 3, follows from n > 3%/¢~?
(36) is satisfied.

This completes the proof of Theorem 1 for p > 2. Let us now consider the case
p =2. For 6 an arbitrary positive number, choose n, so that

fln(In ne)J* _
(37) In(in np) = max{4,46} and == 31n3

Define 8(n) as in (20) for n > n,, but with p replaced by 2. Let

if n>n,,

(38) M) = s+ B+ 3

and let B(n)=A(n)=0 if n = n,. Choose D so that, for n = n,, there exist
{#:(n)} which can be used in Lemma 1 to prove that

(Z=x).

For example, we could let ¢:(n)=i"" for i = n and note that

(39) A,

)gon%, if n<n, and [x']=1.

n
1 od
nzzt 2<2n,
1

to see that D could be 2n,”?. We will show that, if each x/, 1 =j = n, is in X, with
|x!|| =1, then, for all n > n,,

A, (i txf)
j=1 o

Since n*™ =3(3e) - n®/t"™ " this implies (19) for n > n,. We will establish (40)
by induction. Suppose n > n, and there exist nonnegative numbers {¢;(k)} for
each k <n which can be used in Lemma 1 to verify (40) if n is replaced by any
k < n. The principal technique in the proof is to use Lemma 3 after making each
exponent of n in (17) less than or equal to

41) i+A(n)-B(n).
This will imply that (40) is satisfied, since n™?® = 37*'? and (37) implies

= Dn¥e®,

(40)




12 R. C. JAMES Israel J. Math.

333D + 4w )]<D if D =2n}?
For the second exponent of n in (17) to be less than or equal to (41), we need
(42) a = 1+2[B(n)-A(n)].

For the first exponent of n in (17) to be less than or equal to (41), we need (27)
and (28) with p =2 and 3 replaced by n,. Since A(n) is equal to 8/[Ina +
In(ln n)}+[B(n)+ (2Inn)")/a, these are equivalent to

(43) 0=A(n)—B(n), if n*=n,
af < 6 . o
(44) Ina +ln(lnn)+ﬁ(n)=ln(lnn)’ it n®>n,.

Since In(In n) >0, (43) is valid for all n. Thus the inductive proof is completed if
a can be chosen so that (42) and (44) are satisfied, whether or not n* = n,.
Inequality (42) is equivalent to

20 1

> ——— e —
@zl In(lnn) Inn’

and the right member of this inequality is positive and greater than ;—1/(ln n)
because of (37). Thus there is an « with 0= a <1 which satisfies (42), (44) and
the requirement that n® be an integer, if (44) is satisfied for all & between

20 120
In(lnn) Inn In(lnn)’

For a in this interval, the left member of (44) increases with a, since
a>3—1/(Inn)>e/(Inn), so it is sufficient to have

{1-26[In(ln n)]"'}6 3n3) ___ 6
—49[In(Inn)] ' +In(lnn) 2(n2)~ In(Inn)’

This can be proved by using the following inequality, which follows from (37):

3(in3) _ ,[2—4[ln(In n)]’
2n2) < ? [ [in(ln n)f ]
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