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N O N R E F L E X I V E  S P A C E S  O F  T Y P E  2 

BY 

R. C. JAMES 

ABSTRACT 

The nonreflexive and uniformly nonoctahedral spaces Xp are known to be of 
type p if 1 _----- p < 2 and p is sufficiently large, It is shown that Xp is of type 2 if 
p > 2 .  

A Banach space X is of type p if there is a constant C such that, for any choice 

of {x': l<=i<=n} in X, we have 

(1) II + ).11 
where the summation is over all sequences o- of n signs. It will be shown that 

there are nonreflexive spaces of type 2. The question of a relation between 

reflexivity and "type 2" was raised in [1, p. 646]. Davis and Lindenstrauss 

showed that for each p < 2 there is a nonreflexive space of type p [2, theor. 3, p. 

193]. Kwapiefi showed that a Banach space X is isomorphic to a Hilbert space if 

it is of type 2 and cotype 2 [6, theor. 1]. Pisier established a stronger result [10, 

prop., p. 348], which implies that X is super-reflexive if X is of type 2 and there 

is a sequence {C,} such that lim, +~ C, In n = 0o and, for each n and any choice of 
{x': l<-i<=n} in X, 

2-~ ,o,---x' . _->c. IIx'll 2 

The first nonreflexive spaces known to have type greater than 1 were the 

uniformly nonoctahedral spaces given in [4]. The definition of these spaces was 

improved considerably in [5, p. 104]. With only a rather superficial change, this is 

the definition to be used here. The change yields a minor improvement in the 

coefficient of n ~ in inequality (18). 
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It is an unpublished result of G. Pisier that a Banach space is of type 2 if it is of 

"equal-norm type 2", i.e., if (1) is satisfied when p = 2 and Ilx ~ l[ = 1 for each i. 

Using equal norms is of vital importance for the methods of this paper. 

Therefore  we include the following proposition. 

PROPOSITION (Pisier). A Banach space X is of type 2 if there is a constant C 

such that, for any choice of {x': 1 <= i <- n} in X with IIx' II = 1 ]:or each i, 

PROOV. If follows from Proposition 5 of [9] that if {gi} are independent  

Gaussian random variables with means 0, then X is of type 2 if and only if there 

is a constant D such that, for any choice of {x': 1 _-<i =< n} in X, 

f_'.la i (a,, )'" g,(t)x'  dt <-_ O x'  II' �9 

If (1) is satisfied for equal norms, and {g~} are independent normalized Gaussian 

random variables, then by repeating x i's it follows from the central limit 

theorem that 

if IIx' II = 1 for 1 _-< i _-< n. Now suppose that {x': 1 =< i =< n} are given and that 

IIx' II = p, IN for each i. Let xj = N x ' / p ,  for 1 =< / =< p~, and let {g,j} be indepen- 

dent normalized Gaussian random variables. Then 

f .Fl  II go(t)xj dt <= C p~ . 

The coefficient of x i in the integrand is N(E~?lgo)/p,. Thus if G, = (E~?~g~i)/p,, 

then {G,} are independent normalized Gaussian random variables and 

yr. . , , , ,  
- , ,_ . ) : ll x ' ll ) 

which implies X is of type 2. 

By a bump we mean any function which is equal to some nonzero constant on 

an interval of positive integers, and is equal to 0 at all other  positive integers. 

This constant is the altitude of the bump. Two bumps are said to be disjoint if the 

intervals on which they are nonzero are disjoint. For 1 < p  < %  define a 

functional ~ ] on the set of sequences with finite support, letting 
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where x = E~L1x" and each x ~ is the sum of r. disjoint bumps whose altitudes 

have absolute value h~ (in [5] it was required that the bumps in r~ all have the 

same altitude). The functional ~ ] does not satisfy the triangle inequality, so we 

let 

II x l l = i n f  I[x k ] : x =  x k . 
= k = l  

The completion with respect to this norm of the space of finitely supported 

sequences will be called Xp. As observed in [4, p. 150] and [5, pp. 101-102], it is 

easy to see that Xp is not reflexive. 

To prove that Xv is of type 2 if p > 2, it is helpful to prove three lemmas in 

preparation. The three-dimensional version of Lemma 1 contains essentially the 

same arguments as used in [5, p. 105]. When n is given, we shall let A~ denote 

the average over the 2" possible arrangements cr of n consecutive signs. 

LEMMA 1. For each n, a sufficient condition that 

.for any choice of {xJ: 1 <-_] <-n} in Xp with each I l x J l l  = 1, is that there exist 

nonnegative numbers {4~,(n): i _- < N} which have the two properties: 

(i) Ef~l[n~,(n)ll'o < K; 
(ii) if each ~J, 1 <= j <= n, is the sum of rj disjoint bumps of altitudes + 1 or - 1 

with each rj ~ 0, then it is possible to have, ]:or each ~, 

i 
where each ~ is the sum of disjoint bumps of altitudes + 1 or - 1 and, if ~ is the 

average over tr of the number of bumps in g & then 

(4) ~ < ~ b , ( n ) ~ r j  for each i. 
j = l  

PROOF. By the same arguments used in [5, pp. 102-103], it is sufficient to 

establish (3) with II 11 replaced by II] and ~x ' ]  = 1 for each ]. As noted in [5, pp. 

104-105], it follows from the telescoping nature of the bracketed terms in (2) that 

there exist numbers m and {h~ : 1 ~ / z  =< m} such that, for each x j, there exists a 

finite sequence of non-negative integers {r,j: 1 =</z -< m } such that 
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where x j = E~' - I~  and each ~ is the sum of r~,~ disjoint bumps whose altitudes 

have absolute values h,.. Now use (ii) and obtain, for each # and ~r, 

j - 1  o , ~  iff i l  

' disjoint bumps whose altitudes have absolute where each ~ , .  is the sum of r ~  

values h~, and 
n 

(5) r~=-' < q~,(n) ~ r,.j for each p and j, 
j f f i l  

i 
- '  is the average over o" of r,.~. where r,. For each ~r, we have 

Thus it follows from the triangle inequality and convexity of t ~ that 

a'll (,~-+ x'). I--< ~ a'Jl~l'~01 
(6) _--< ,-1 ~ {  a .  I1~, ' fl'}" " 

Since, for each i, we have 

m p m m p 

If~,.-if ~ .-[<~.~,)" (,.~.,~,) ] 
it follows from (6) and (5) that 

I1<,~ )11 ~(.~ [<~. )'-<,~+,~,)0]]"" A .  - - - x  j . _-< r,, hk 

N 

____~ 

i f f i l  

N 

,(n lx  j 

= y~ [ . , / , , ( n ) ] " '  < K.  
i ff i l  
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T h e  fol lowing inequal i ty  (7) is needed  for  L e m m a  2. Le t  

- -n  n 
PT, = 2 i " 

By using the equal i ty  P~, = ~ "-~ .-2 ~(P~-2 + 2P~_~ + p~_2), it is not  difficult to p rove  for  

n = > 5 that  

fkn, when n is even,  
P [  *e -~"-2~)'~2")-'2 if k <  < 

[ . � 89  when  n is odd.  

If we let n - 2k = r and let e be  1 or  2 according  as n is odd  or  even,  then for  

any posi t ive O and n -_> 5, we have  

k = 0  k ~ 0  

fo (7) = 2-'~Pe -"=r < 2 -'~" e- '~2~*r 'dx 
K~E 

[I -~ in 
= --lip 1/2  

where  the  e r ro r  in app rox ima t ing  PT, when  n is odd  and  k = �89 - 1) is m o r e  

than ba lanced  by the  integral  approx ima t ion .  If  n = 4, inequal i ty  (7) b e c o m e s  

(~)~/~ + u6jts-w" < ~2t!rrovjW22-~/"2, or  (~)~/~ + ~sjt-swP < 2a_~w2~2,,vj , which clearly is t rue  if 

p = 2 .  

LEMMA 2. Suppose C and {A(n): n => 1} are positive numbers such that, for 
each n, there exist positive numbers {4'~(n): 1 =< i < N(n )}  for which 

n t " n x l l / P =  (8) ~ [ 4,~ )j < Cn~=+'% 
i = l  

and (ii) of L e m m a  1 is satisfied [or X,. Then for each n > 4 and each a with 

0<= a < 1 for which n" is an integer, there are positive numbers {~b](n): 1 - < i _  < - 

N ' (n )}  such that (ii) of L e m m a  1 is satisfied for Xp, and 

N,t.~ ( 1 ) 1 ~  (9) ~ [n~b~(n)] lip < 3~/~Cn"[~+~c"*)]+~-"~/P+ 6 TM ~r n i§176 
i = 1  

PROOF. Le t  each ~:J, 1 _-< j = n, be  the  sum of  rj dis joint  b u m p s  with al t i tudes 

+ 1 or  - 1, whe re  each rj ~_ 0. T h e  n o r m  for  Xp is repetition-invariant, mean ing  
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that  II x II depends  only on the distinct number s  used as c o m p o n e n t s  of  x and their  

order ,  but  is i ndependen t  of repet i t ions  of a number .  Suppose  two b u m p s  have  a 

c o m m o n  endpo in t  and  one  b u m p  is s t re tched or shrunk to the  next  in teger  and  

this in teger  is not the endpo in t  of any bump.  W h e n  represen t ing  (E~___~J)~ as 

E ~ ,  this cannot  decrease  the  n u m b e r  of b u m p s  needed  in the var ious  ~?~'s. Thus  

there  is no loss of genera l i ty  in proving  L e m m a  2 with the assumpt ion  that  no 

two b u m p s  a m o n g  all those involved in the var ious  ~J's have  a c o m m o n  

endpoin t .  Since there  are  then 2E7=~ r, endpoints ,  there  is an in terval  I which 

conta ins  the suppor t  of each ~r and is the  union of (2Y7=~ rj) - 1 intervals  on each 

of which each ~ is constant .  

For  an arbi t rary  a for  which 0 ~ a < 1 and n ~ is an integer ,  par t i t ion I into 

intervals  {L } such that  each I~ is the union of at most  n"  consecut ive  intervals  on 

which each ~J is constant .  If  n ~ < XT=~ r# we can have  

2 ~ r j  3 rj 

(10) 1 = < k < 1 + __za.L_n ~ < j=,n ~ 

If n ~ _--- X;'=, rj, let the par t i t ion consist only of  I itself. Now choose  two sets A 

and B of vectors  as follows. If n a _->X;'=~r~, let A = { s  r and B = 0 .  If 

n ~ < Y.'d=xrj, we define, for  each vec tor  ~:J, a vec tor  rl j in A and s rj in B. For  each  

j, let rl '  be  the sum of all b u m p s  with the p rope r ty  that  each b u m p  e i ther  is a 

b u m p  of ~:J whose  suppor t  is a p rope r  subset  of  some  I,, or  it is the  par t  of a 

b u m p  of s ej that  ex tends  into but  not across some  Ik, i.e., if h is not  con ta ined  in 

the suppor t  of s c~, then ~:' and r/~ have  the s ame  in tersect ions  with the  

character is t ic  funct ion of Ik. Then  let ~'J = ~J - rl ~. No te  that  e i ther  r/~ or  ~.s or  

bo th  might  be  0. 

Since no two b u m p s  involved in the var ious  ~' 's  have  a c o m m o n  endpoin t ,  and 

each b u m p  of an r/j that  has a point  of  suppor t  in lk is cons tant  on at least one  

subinterval  of Ik, at most  n ~ vectors  in A have  their  suppor t s  in the same  Ik and 

those with suppor t  i n /~  have  a total  of at most  n ~ bumps .  The re fo re ,  we can 

have  

+-- ~/ = ;7 ~,,, for  each k, 

whe re  ~//, is the  restr ict ion of ~ to Ik, and also have  

n 

Sk<=r ", if n " < ~ r j ,  (11) - '  

and 
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tt n 

(12 )  <= if  n o => r,, 
j~z j = l  

where  - SE is the  ave rage  ove r  o- of the 

r/~ = Zk r/~,. for  each i. T h e n  

n u m b e r  of b u m p s  in r/k~.' N o w  let 

--- n') N o, 
o'.  

j = l  o- i = l  

If gi is the ave rage  ove r  o- of  the n u m b e r  of b u m p s  in ~ ~, then it fol lows f rom (10) 

and  0 1 )  that  

n 

~t~--- - 3th, (n, ,)  ~" r,, (13) g~ _-<3th,(n )n n"  - j=, 

if n "  < E;=l ri. Because  of (12), inequal i ty  (13) is valid when  n"  _-> ET=, r,, even  if 

the "3"  is dele ted.  

Each  of the  n or  fewer  vectors  in B is the  sum of  b u m p s  of al t i tudes + 1, or  

- 1, each having as suppor t  a union of consecut ive  Ik 's. We  will now choose  {sr~ ' } 

so that ,  for  each o-, 

\ j ~ l  ~ ~ i = 1  

with each ~'~' the  sum of b u m p s  with al t i tudes + 1 or  - 1. For  1 < i < n, let sr~ 

have  value  0 in all intervals  Ik for  which I (2;=, - rJ)~ I < n - i + 1, and o therwise  

let ~'~' have  value + 1 or  - 1 according as (Y,"=, + sr~)~ is posi t ive or  negat ive.  

Then  (14) is satisfied. 

If  exact ly  m of the  g'J's are  nonze ro  on I~, then the  n u m b e r  of  a r r a n g e m e n t s  of 

signs tr for  which ~'~' is nonze ro  on Ik is 2" t imes the probabi l i ty  that  n - i + 1 is 

less than  or equal  to the abso lu te  value of the  di f ference be tween  the n u m b e r  of 

successes and the n u m b e r  of failures in m Bernoul l i  events  with probabi l i ty  �89 

This  probabi l i ty  does  not decrease  by m o r e  than �89 if m is rep laced  by n. Thus,  if 

is the  ave rage  ove r  o- of  the n u m b e r  of b u m p s  in ~ ,  then it follows f rom (10) that  

(15) (n) (7) ( 
< 4  0 + + " "  + [ �89 . -~ 

2" n ~ 

W e  now have  (Y~,=,_+ xi  L = v N ( - ~  - , ~i=1 ,t . .+  Ei~l~'~. Also,  there  are N ( n ~ ) +  n new 

~bi's, which we deno t e  by {~b'~(n): 1 <-_ i <-_ N ( n ~ ) +  n}, and choose  by use of  (13) 

and (15) so as to satisfy (4). Then  
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~ ) 

[n .  ~b ](n)]'/" < [3n.  4~, (n " ) ] "  
i i - I  

+ 2 1 1 2 n ( O ) ' + ( 1 ) + ' " + ( [ ~ ( i n l ) ] ) ]  2"n" 

= 3-On(,-,,)/~ ~ ") [n,,qb, (n,,)],/o 

. n + + ' " +  [ �89  
+ 12~/On._~)/~ 0 2 ~ . 

The first of these summations (without its coefficient) is by hypothesis not greater 
than Cn ~189247 The second summation is less than (2~rp)~2-11Pn ~ if n => 4, since 

it is not greater than 2E[,~L~ "-1)1 (P?,)~", which (7) implies is less than (2~rp)i2-~/Pn t. 

Thus 

[n~b'j(n)] '/p < 3'/PCn,,t~+"(-*)J+('-")/o + 6,. ,(2r ~+(,-.,)/o. 
i 

LEMMA 3. Let n > 4  be a positive integer. Suppose C and {A(k): 1 ---< k < n} 

are nonnegative numbers, and that there exist nonnegative numbers {4~(k)} for 
each k < n which can be used in Lemma 1 to verify that, if IIx j II = 1 for each j, 
then 

(16) 

If  0 ~ a < 1 and n" is an integer, then there exist nonnegative numbers {~b](n)} 

which can be used in Lemma 1 to verify that, if Itx'lt-- 1 for each j, then 

(17) A~ -- x i < 3~/PCn "[~+a(")l+~ + 6~P(2zrp)~n~+~ 
~r 

PROOF. This Lemma is an immediate consequence of Lemmas 1 and 2. 

THEOREM. The space Xp is of type 2 if p > 2. Moreover, for each n and any 
{xi: 1 <=j <- n} in Xp with IIx' II = 1 for each j, we have 

(18) A~ll Qo~ +- x J) ~,ll <= [3("§ )t/'(~TrP )~]n~. 

For X2 and any 0 > 0, there is an ne such that 
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(19) 

PROOF. 
n > 3  by 

" 6(3eno )~n~,+ol[,.(,..)l, 

if n _--< n, 

if n > no. 

Assume first that p > 2. In t roduce  the funct ions/3  and A defined for  

(20) /3(n) = (1 + p) ln  3 p In n or  n o<") = 3 ~ 

(21) 
1 

 e_p _ 2t (n) + p In n' A(n) 

and / 3 ( n ) =  A ( n ) = 0  if n _--<3. We will show that if n _->4 and if x i E X ,  with 

IIx [[ = 1 for  1 _-zj __< n, then 

(22) A,,ll (i~=z +- x i)~,lt < 2"~ )~n �89 

Since n a("~ = 3<~176 ~/o, this will establish (18) for  n _---4. Since ]l (Z7 + x/)~ II 

n if IIx j [[ = 1 for  each L and the right m e m b e r  of (18) is g rea te r  than 3n ~ if p > 2, 

we see that (18) is valid if n < 4. 

We will establish (22) for  n > 4 by induction.  In o rde r  to use L e m m a  3 in the 

first step of the induction,  we need  to know that there  exist {~b~(n)} for  n-_<4 

which can be used in L e m m a  1 to establish (22) for  n _-< 4. If we let (kJ(n) = 1 for  

1 =< i _-< n and n = 1, 2, or  4, and let ~b~ (3) = i-1 for  1 _-< i _-< 3, then (ii) of L e m m a  1 

is satisfied and we need  to have,  for  n =< 4 and p > 2, 

(23) ~ [nch,(n )]"" <= 2~'"(~Tro)ln~+~<"). 
i = 1  

This is satisfied for n = l ,  since l<2~P(~Irp)~; for  n = 2 ,  since 2 - 2 t / " <  

2~/"(�89 for  n = 3 ,  since 3"~(1+2-1'~+3-1'~)<21'~(~-#)~3~ follows f rom 

1 + 2 ~"+  3-1~p< 2'~P(�89 and for  n = 4, since 4 . 4 1 ' ~ <  3(o+w(P-2)(2e)l~P(�89 

Now suppose  n > 4 and for  each k < n there  exist nonnega t ive  numbers  {~bi (k)} 

which can be used in L e m m a  1 to verify that (22) is valid if n is replaced by any 

positive in teger  k < n. The  principal t echnique  in the proof  is to choose  C in (16) 
by letting 

(24) C = 2"o(~r 

and then using L e m m a  3 af ter  making each exponen t  of  n in (17) less than or  
equal  to 
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(25) �89 A(n ) - /3  (n). 

This will imply that (22) is satisfied, since n -~<"> = 3 -H~", and 

3- '-""[3"PC + 6"P(2~p) ~] = C. 

For the second exponent of n in (17) to be less than or equal to (25), we need 

(26) a _-> 1 + p [ O ( n )  - A(n)]. 

For the first exponent of n in (17) to be less than or equal to (25), we need 

1 1 - a < l  
~ a +  P = - + A ( n ) - / 3 ( n ) 2  if n~<3,= (27) 

and 

(28) a [ I + A ( n . ) ] +  1 - a < l  P = ~ + A ( n ) - f l ( n )  if n " > 3 .  

Since A(n~) = M n ) / a ,  these are equivalent, respectively, to 

(29) a - < l +  2__ 0 [A(n)- /3(n)]  if n" <3 ,  
p 2 = 

(30) a = l -  2_ 0 /3(n) if n ~ > 3 .  
p 2 

Since (29) is satisfied if a < 1, the inductive proof is completed for all n for which 

a can be chosen so that n" -< 3 and a satisfies (26). That is, for all n such that 

( 3 1 )  n l.ptt3~.)-a~,>j =< 3,  

which is true if n . n-Z"~ < 3.  S i n c e  n ~<") = 3 w~~176 this is satisfied if 

(32) n ~ 33P/(p-2). 

Now assume that n > 3 3p/cp-z). Because 

(33) n X + ~  x if x->0,  

there is an a that satisfies both (26) and (30) and also satisfies 0 =< a < 1 and the 

requirement that n ~ be an integer, if 

(34) 1 - _ ~(n)  - {1 + o [ ~ ( n ) -  a(n)]} _-> In n '  

and also 
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I_L__< 20 
(35) Inn - 1 - P--r 2/3 (n). 

Because of (21), (34) is an equality. Write (35) as 

(36) 1 + 2(1 + p)ln 3 p - 2  -<Inn. 

Since the inequality, In n > In 3 + 2(1 + p ) ( p  - 2) -1 In 3, follows from n > 33~ 

(36) is satisfied. 

This completes the proof of Theorem 1 for p > 2. Let us now consider the case 

p = 2. For 0 an arbitrary positive number, choose n0 so that 

(37) I n ( I n n 0 ) -  >max{4,40}  and [In(Inn0)]2< 202 
In n0 = 3 In 3" 

Define f l (n)  as in (20) for n > ns, but with p replaced by 2. Let 

0 1 
(38) A( n ) - in (ln n--~ + fl ( n ) + 21n n if n > no, 

and let /3 (n)=  A ( n ) = 0  if n _--< n0. Choose D so that, for n -< n0, there exist 

{~bi(n)} which can be used in Lemma 1 to prove that 

(39) A,,  •  <=Dn �89 if n < - n ,  and J lx ' l [= l .  
o- 

For example, we could let ~b~(n) = i -1 for i _-< n and note that 

Jt n 

n2~" i-~ < 2n, 
1 

to see that D could be ~z2 2he . We will show that, if each x', 1 _--< j --< n, is in X2 with 

II x'  II = 1, then, for all n > no, 

(40) A~ +- x j -< D n  ~+a("). 
t r  

Since n a("~= 3(3e) ~. n "~p"~ this implies (19) for n > n,. We will establish (40) 

by induction. Suppose n > no and there exist nonnegative numbers {thi(k)} for 

each k < n which can be used in Lemma 1 to verify (40) if n is replaced by any 

k < n. The principal technique in the proof is to use Lemma 3 after making each 

exponent of n in (17) less than or equal to 

(41) ~ + A(n) - / 3  (n). 

This will imply that (40) is satisfied, since n -~(") = 3 -3/2 and (37) implies 
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3-3/213~'D + 6~(4~-)i I < D if D = 2n m O �9 

For the second exponent of n in (17) to be less than or equal to (41), we need 

(42) ot _-> 1 + 2[/3 ( n ) -  A(n)]. 

For the first exponent of n in (17) to be less than or equal to (41), we need (27) 

and (28) with p = 2  and 3 replaced by no. Since A(n *) is equal to O/[lnct + 
In(In n)] + [ /3(n)+ (2In n)-l] /a,  these are equivalent to 

(43) 0_--<A(n)-/3(n), if n"<--_no, 

ao o 
(44) l n a + l n ( l n n )  +/3(n)-< if n ' > n o .  In ( lnn) '  

Since In (In n) > 0, (43) is valid for all n. Thus the inductive proof is completed if 

a can be chosen so that (42) and (44) are satisfied, whether or not n" _-< no. 

Inequality (42) is equivalent to 

a_->l 
20 1 

In (Inn) I n n '  

and the right member  of this inequality is positive and greater than �89 1/(In n) 
because of (37). Thus there is an a with 0 _-< a < 1 which satisfies (42), (44) and 

the requirement that n" be an integer, if (44) is satisfied for all a between 

20 1 20 
1 and 1 

In (In n) In n In (In n)" 

For a in this interval, the left member  of (44) increases with a, since 

a > �89 1/(In n) > e/(In n), so it is sufficient to have 

{1 - 20 [In (In n ) l - ' }  0 
- 40 [In (In n)]- '  + ln(ln n) 

3(1n3)< 0 
+ 2 (In 2) = In (lnn)" 

This can be proved by using the following inequality, which follows from (37): 

3(In3) < 02[ - 4[In(In n)] - ' ]  
2(In 2) [2 [In (In n)]2 j. 
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