NONREFLEXIVE SPACES OF TYPE 2

BY

R. C. JAMES

ABSTRACT

The nonreflexive and uniformly nonoctahedral spaces X_a are known to be of type p if $1 \le p < 2$ and p is sufficiently large. It is shown that X_a is of type 2 if $\rho > 2$.

A Banach space X is of type p if there is a constant C such that, for any choice of $\{x^i: 1 \leq i \leq n\}$ in X, we have

(1)
$$
2^{-n} \sum_{\sigma} \left\| \left(\sum_{i=1}^{n} \pm x^{i} \right)_{\sigma} \right\| \leq C \left(\sum_{i=1}^{n} \left\| x^{i} \right\|^{p} \right)^{1/p},
$$

where the summation is over all sequences σ of n signs. It will be shown that there are nonreflexive spaces of type 2. The question of a relation between reflexivity and "type 2" was raised in [1, p. 646]. Davis and Lindenstrauss showed that for each $p < 2$ there is a nonreflexive space of type p [2, theor. 3, p. 193]. Kwapień showed that a Banach space X is isomorphic to a Hilbert space if it is of type 2 and cotype 2 [6, theor. 1]. Pisier established a stronger result [10, prop., p. 348], which implies that X is super-reflexive if X is of type 2 and there is a sequence $\{C_n\}$ such that $\lim_{n\to\infty} C_n \ln n = \infty$ and, for each n and any choice of ${x^i: 1 \leq i \leq n}$ in X,

$$
2^{-n} \sum_{\sigma} \left\| \left(\sum_{i=1}^n \pm x^i \right)_{\sigma} \right\| \geq C_n \left(\sum_{i=1}^n \| x^i \|^2 \right)^{1/2}.
$$

The first nonreflexive spaces known to have type greater than 1 were the uniformly nonoctahedral spaces given in [4]. The definition of these spaces was improved considerably in [5, p. 104]. With only a rather superficial change, this is the definition to be used here. The change yields a minor improvement in the coefficient of $n^{\frac{1}{2}}$ in inequality (18).

Received May 28, 1977

It is an unpublished result of G. Pisier that a Banach space is of type 2 if it is of "equal-norm type 2", i.e., if (1) is satisfied when $p = 2$ and $||x^i|| = 1$ for each i. Using equal norms is of vital importance for the methods of this paper. Therefore we include the following proposition.

PROPOSITION (Pisier). *A Banach space X is of type 2 if there is a constant C such that, for any choice of* $\{x^i : 1 \le i \le n\}$ *in X with* $||x^i|| = 1$ *for each i,*

$$
2^{-n}\sum_{\sigma}\left\|\left(\sum_{i=1}^n \pm x^i\right)_{\sigma}\right\| \leq Cn^{\frac{1}{2}}.
$$

PROOF. If follows from Proposition 5 of [9] that if $\{g_i\}$ are independent Gaussian random variables with means 0, then X is of type 2 if and only if there is a constant D such that, for any choice of $\{x^i : 1 \le i \le n\}$ in X,

$$
\int_{-\infty}^{\infty} \left\| \sum_{i=1}^{n} g_i(t) x^i \right\| dt \leq D \left(\sum_{i=1}^{n} \| x^i \|^2 \right)^{1/2}.
$$

If (1) is satisfied for equal norms, and ${g_i}$ are independent normalized Gaussian random variables, then by repeating x^i 's it follows from the central limit theorem that

$$
\int_{-\infty}^{\infty} \left\| \sum_{i=1}^{n} g_i(t) x^i \right\| dt \leq C n^{\frac{1}{2}},
$$

if $||x^i|| = 1$ for $1 \le i \le n$. Now suppose that $\{x^i : 1 \le i \le n\}$ are given and that $||x^i|| = p_i/N$ for each i. Let $x_i^i = Nx^i/p_i$ for $1 \leq i \leq p_i^2$, and let $\{g_{ii}\}\$ be independent normalized Gaussian random variables. Then

$$
\int_{-\infty}^{\infty}\left\|\sum_{i,j}g_{ij}(t)x_j^i\right\|dt\leq C\left(\sum_{i=1}^n p_i^2\right)^{1/2}.
$$

The coefficient of x^{*i*} in the integrand is $N(\sum_{i=1}^{p_i^2} g_{ij})/p_i$. Thus if $G_i = (\sum_{i=1}^{p_i^2} g_{ij})/p_i$, then ${G_i}$ are independent normalized Gaussian random variables and

$$
\int_{-\infty}^{\infty} \left\| \sum_{i=1}^{n} G_i(t) x^i \right\| dt \leq \frac{C}{N} \left(\sum_{i=1}^{n} p_i^2 \right)^{1/2} = C \left(\sum_{i=1}^{n} \left\| x^i \right\|^2 \right)^{1/2},
$$

which implies X is of type 2.

By a *bump* we mean any function which is equal to some nonzero constant on an interval of positive integers, and is equal to 0 at all other positive integers. This constant is the *altitude* of the bump. Two bumps are said to be *disjoint* if the intervals on which they are nonzero are disjoint. For $1 < \rho < \infty$, define a functional $\llbracket \rrbracket$ on the set of sequences with finite support, letting

Vol. 30, 1978 SPACES OF TYPE 2 3

(2)
$$
\llbracket x \rrbracket^{\rho} = \inf \left\{ \sum_{\mu=1}^{m} r_{\mu} \left[\left(\sum_{k=\mu}^{m} h_{k} \right)^{\rho} - \left(\sum_{k=\mu+1}^{m} h_{k} \right)^{\rho} \right] \right\},
$$

where $x = \sum_{\mu=1}^m x^{\mu}$ and each x^{μ} is the sum of r_{μ} disjoint bumps whose altitudes have absolute value h_{μ} (in [5] it was required that the bumps in r_{μ} all have the same altitude). The functional $\llbracket \; \rrbracket$ does not satisfy the triangle inequality, so we let

$$
||x|| = \inf \left\{ \sum_{k=1}^{n} [[x^k]] : x = \sum_{k=1}^{n} x^k \right\}.
$$

The completion with respect to this norm of the space of finitely supported sequences will be called X_e . As observed in [4, p. 150] and [5, pp. 101-102], it is easy to see that X_{ρ} is not reflexive.

To prove that X_{ρ} is of type 2 if $\rho > 2$, it is helpful to prove three lemmas in preparation. The three-dimensional version of Lemma 1 contains essentially the same arguments as used in [5, p. 105]. When n is given, we shall let A_{σ} denote the average over the 2" possible arrangements σ of n consecutive signs.

LEMMA 1. *For each n, a sufficient condition that*

$$
(3) \t A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| < K,
$$

for any choice of $\{x^i : 1 \leq j \leq n\}$ *in* X_ρ *with each* $\|x^j\| = 1$ *, is that there exist nonnegative numbers* $\{\phi_i(n): i \leq N\}$ *which have the two properties:*

(i) $\Sigma_{i=1}^{N}[n\phi_i(n)]^{1/\rho} < K;$

(ii) *if each* ξ^{j} , $1 \leq j \leq n$, *is the sum of r_i disjoint bumps of altitudes* + 1 *or* - 1 with each $r_i \ge 0$, then it is possible to have, for each σ ,

$$
\left(\sum_{j=1}^n \pm \xi^j\right)_{\sigma} = \sum_{i=1}^N \xi^i_{\sigma},
$$

where each ξ^i_σ is the sum of disjoint bumps of altitudes + 1 or -1 and, if \bar{r}_i is the *average over* σ *of the number of bumps in* ξ_{σ}^i *, then*

(4)
$$
\bar{r}_i \leqq \phi_i(n) \sum_{j=1}^n r_j \quad \text{for each } i.
$$

PROOF. By the same arguments used in [5, pp. 102-103], it is sufficient to establish (3) with $\parallel \parallel$ replaced by $\parallel \parallel$ and $\parallel x' \parallel = 1$ for each *i*. As noted in [5, pp. 104-105], it follows from the telescoping nature of the bracketed terms in (2) that there exist numbers m and $\{h_{\mu}: 1 \leq \mu \leq m\}$ such that, for each x^{j} , there exists a finite sequence of non-negative integers $\{r_{\mu j}: 1 \leq \mu \leq m\}$ such that

$$
1 = \llbracket x^j \rrbracket^{\rho} = \sum_{\mu=1}^m r_{\mu j} \left[\left(\sum_{k=\mu}^m h_k \right)^{\rho} - \left(\sum_{k=\mu+1}^m h_k \right)^{\rho} \right],
$$

where $x^j = \sum_{\mu=1}^m \xi^j_\mu$ and each ξ^j_μ is the sum of $r_{\mu j}$ disjoint bumps whose altitudes have absolute values h_{μ} . Now use (ii) and obtain, for each μ and σ ,

$$
\left(\sum_{j=1}^n \pm \xi_{\mu}^j\right)_{\sigma} = \sum_{i=1}^N \xi_{\mu\sigma}^i,
$$

where each $\xi_{\mu\sigma}^i$ is the sum of $r_{\mu\sigma}^i$ disjoint bumps whose altitudes have absolute values h_{μ} , and

(5)
$$
\bar{r}_{\mu}^{i} \leq \phi_{i}(n) \sum_{j=1}^{n} r_{\mu j} \text{ for each } \mu \text{ and } j,
$$

where \vec{r}_{μ}^{i} is the average over σ of $r_{\mu\sigma}^{i}$. For each σ , we have

$$
\left(\sum_{j=1}^{n} \pm x^{j}\right)_{\sigma} = \left[\sum_{j=1}^{n} \pm \left(\sum_{\mu=1}^{m} \xi^{j}_{\mu}\right)\right]_{\sigma} = \sum_{\mu=1}^{m} \left(\sum_{j=1}^{n} \pm \xi^{j}_{\mu}\right)_{\sigma}
$$

$$
= \sum_{\mu=1}^{m} \left(\sum_{i=1}^{N} \xi^{i}_{\mu\sigma}\right) = \sum_{i=1}^{N} \left(\sum_{\mu=1}^{m} \xi^{i}_{\mu\sigma}\right).
$$

Thus it follows from the triangle inequality and convexity of t^e that

(6)

$$
A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| \leq \sum_{i=1}^{N} A_{\sigma} \left\| \sum_{\mu=1}^{m} \xi_{\mu\sigma}^{i} \right\|
$$

$$
\leq \sum_{i=1}^{N} \left\{ A_{\sigma} \left\| \sum_{\mu=1}^{m} \xi_{\mu\sigma}^{i} \right\|^{2} \right\}^{1/p}.
$$

Since, for each i, we have

$$
\left\|\sum_{\mu=1}^m \xi_{\mu\sigma}^i\right\|^p \leq \sum_{\mu=1}^m r_{\mu\sigma}^i \bigg[\bigg(\sum_{k=\mu}^m h_k\bigg)^p - \bigg(\sum_{k=\mu+1}^m h_k\bigg)^p\bigg],
$$

it follows from (6) and (5) that

$$
A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| \leq \sum_{i=1}^{N} \left\{ \sum_{\mu=1}^{m} \bar{r}_{\mu}^{i} \left[\left(\sum_{k=\mu}^{m} h_{k} \right)^{\rho} - \left(\sum_{k=\mu+1}^{m} h_{k} \right)^{\rho} \right] \right\}^{1/\rho}
$$

$$
\leq \sum_{i=1}^{N} \left\{ \sum_{\mu=1}^{m} \left[\phi_{i}(n) \sum_{j=1}^{n} r_{\mu j} \right] \left[\left(\sum_{k=\mu}^{m} h_{k} \right)^{\rho} - \left(\sum_{k=\mu+1}^{m} h_{k} \right)^{\rho} \right] \right\}^{1/\rho}
$$

$$
\leq \sum_{i=1}^{N} \left\{ \phi_{i}(n) \sum_{j=1}^{n} \sum_{\mu=1}^{m} r_{\mu j} \left[\left(\sum_{k=\mu}^{m} h_{k} \right)^{\rho} - \left(\sum_{k=\mu+1}^{m} h_{k} \right)^{\rho} \right] \right\}^{1/\rho}
$$

$$
= \sum_{i=1}^{N} \left\{ \phi_{i}(n) \sum_{j=1}^{n} \left[x^{j} \right]^{p} \right\}^{1/\rho}
$$

$$
= \sum_{i=1}^{N} \left[n \phi_{i}(n) \right]^{1/\rho} < K.
$$

The following inequality (7) is needed for Lemma 2. Let

$$
P_k^n = 2^{-n} \sum_{i=0}^k \binom{n}{i}.
$$

By using the equality $P_k^n = \frac{1}{4}(P_{k-2}^{n-2} + 2P_{k-1}^{n-2} + P_k^{n-2})$, it is not difficult to prove for $n \geq 5$ that

$$
P_k^n < \frac{1}{2}e^{-(n-2k)^2(2n)^{-1}} \quad \text{if} \quad k < \begin{cases} \frac{1}{2}n, & \text{when } n \text{ is even,} \\ \frac{1}{2}(n-1), & \text{when } n \text{ is odd.} \end{cases}
$$

If we let $n - 2k = \kappa$ and let ε be 1 or 2 according as n is odd or even, then for any positive ρ and $n \ge 5$, we have

(7)
\n
$$
\sum_{k=0}^{[(1/2)(n-1)]} (P_k^n)^{1/\rho} < \sum_{k=0}^{[(1/2)(n-1)]} 2^{-1/\rho} e^{-(n-2k)^2 (2n\rho)^{-1}}
$$
\n
$$
= \sum_{k=0}^n 2^{-1/\rho} e^{-\kappa^2 (2n\rho)^{-1}} < 2^{-1/\rho} \int_0^\infty e^{-x^2 (2n\rho)^{-1}} dx
$$
\n
$$
= \left(\frac{1}{2}\pi\rho\right)^{1/2} 2^{-1/\rho} n^{1/2},
$$

where the error in approximating P_k^n when n is odd and $k = \frac{1}{2}(n-1)$ is more than balanced by the integral approximation. If $n = 4$, inequality (7) becomes $(\frac{1}{16})^{1/\rho} + (\frac{5}{16})^{1/\rho} < (\frac{1}{2}\pi\rho)^{1/2}2^{-1/\rho}$, or $(\frac{1}{8})^{1/\rho} + (\frac{5}{8})^{1/\rho} < 2(\frac{1}{2}\pi\rho)^{1/2}$, which clearly is true if $\rho \geq 2$.

LEMMA 2. *Suppose C and* $\{\Delta(n): n \geq 1\}$ *are positive numbers such that, for each n, there exist positive numbers* $\{\phi_i(n): 1 \leq i \leq N(n)\}\$ *for which*

(8)
$$
\sum_{i=1}^{N(n)} [n\phi_i(n)]^{1/\rho} \leq C n^{\frac{1}{2}+\Delta(n)},
$$

and (ii) of Lemma 1 is satisfied for X_a . Then for each $n > 4$ and each α with $0 \le \alpha < 1$ for which n^{α} is an integer, there are positive numbers $\{\phi'(n): 1 \le i \le n\}$ $N'(n)$ } *such that* (ii) *of Lemma 1 is satisfied for* X_p *, and*

(9)
$$
\sum_{i=1}^{N'(n)} [n\phi'_i(n)]^{1/\rho} < 3^{1/\rho}Cn^{\alpha[\frac{1}{2}+\Delta(n^{\alpha})]+(1-\alpha)/\rho} + 6^{1/\rho}(\frac{1}{2}\pi\rho)^{1/2}n^{\frac{1}{2}+(1-\alpha)/\rho}.
$$

PROOF. Let each ξ^j , $1 \leq j \leq n$, be the sum of r_j disjoint bumps with altitudes $+ 1$ or $- 1$, where each $r_i \ge 0$. The norm for X_p is *repetition-invariant*, meaning

that $||x||$ depends only on the distinct numbers used as components of x and their order, but is independent of repetitions of a number. Suppose two bumps have a common endpoint and one bump is stretched or shrunk to the next integer and this integer is not the endpoint of any bump. When representing $(\Sigma_i \pm \xi^j)_{\sigma}$ as $\Sigma_i \xi_{\sigma}^i$, this cannot decrease the number of bumps needed in the various ξ_{σ}^i 's. Thus there is no loss of generality in proving Lemma 2 with the assumption that no two bumps among all those involved in the various ξ^{i} 's have a common endpoint. Since there are then $2\Sigma_{i=1}^n r_i$ endpoints, there is an interval I which contains the support of each ξ^j and is the union of $(2\Sigma_{i=1}^r r_i) - 1$ intervals on each of which each ξ^i is constant.

For an arbitrary α for which $0 \le \alpha < 1$ and n^{α} is an integer, partition I into intervals $\{I_k\}$ such that each I_k is the union of at most n^{α} consecutive intervals on which each ξ^j is constant. If $n^{\alpha} < \sum_{i=1}^n r_i$, we can have

(10)
$$
1 \leq k < 1 + \frac{2 \sum_{j=1}^{n} r_j}{n^{\alpha}} < \frac{3 \sum_{j=1}^{n} r_j}{n^{\alpha}}.
$$

If $n^{\alpha} \ge \sum_{j=1}^n r_j$, let the partition consist only of I itself. Now choose two sets A and B of vectors as follows. If $n^{\alpha} \ge \sum_{i=1}^{n} r_i$, let $A = \{\xi^i\}$ and $B = \emptyset$. If $n^{\alpha} < \sum_{j=1}^{n} r_j$, we define, for each vector ξ^{j} , a vector η^{j} in A and ζ^{j} in B. For each j, let η' be the sum of all bumps with the property that each bump either is a bump of ξ^j whose support is a proper subset of some I_k , or it is the part of a bump of ξ^i that extends into but not across some I_k , i.e., if I_k is not contained in the support of ξ^i , then ξ^i and η^i have the same intersections with the characteristic function of I_k . Then let $\zeta^j = \xi^j - \eta^j$. Note that either η^j or ζ^j or both might be 0.

Since no two bumps involved in the various ξ' 's have a common endpoint, and each bump of an η^j that has a point of support in I_k is constant on at least one subinterval of I_k , at most n^{α} vectors in A have their supports in the same I_k and those with support in I_k have a total of at most n^{α} bumps. Therefore, we can have

$$
\left(\sum_{j=1}^n \pm \eta \, i\right)_{\sigma} = \sum_{i=1}^{N(n^{\alpha})} \eta_{k\sigma}^i \quad \text{for each } k,
$$

where η_k^i is the restriction of η^i to I_k , and also have

(11)
$$
\bar{s}_k^i \leq \phi_i(n^{\alpha})n^{\alpha}, \quad \text{if} \quad n^{\alpha} < \sum_{j=1}^n r_j,
$$

and

Vol. 30, 1978 SPACES OF TYPE 2 7

(12)
$$
\bar{s}_k^i \leq \phi_i(n^{\alpha}) \sum_{j=1}^n r_{j}, \quad \text{if} \quad n^{\alpha} \geq \sum_{j=1}^n r_{j},
$$

where \bar{s}_k is the average over σ of the number of bumps in $\eta_{k\sigma}$. Now let $\eta_{\sigma}^{i} = \sum_{k} \eta_{k\sigma}^{i}$ for each *i*. Then

$$
\left(\sum_{j=1}^n \pm \eta^j\right)_{\sigma} = \sum_{i=1}^{N(n^{\alpha})} \eta^i_{\sigma}.
$$

If \bar{s}_i is the average over σ of the number of bumps in η_{σ}^{i} , then it follows from (10) and (11) that

(13)
$$
\bar{s}_{i} \leq 3\phi_{i}(n^{\alpha})n^{\alpha} \frac{\sum_{i=1}^{n} r_{i}}{n^{\alpha}} = 3\phi_{i}(n^{\alpha})\sum_{j=1}^{n} r_{j},
$$

if $n^{\alpha} < \sum_{j=1}^{n} r_j$. Because of (12), inequality (13) is valid when $n^{\alpha} \ge \sum_{j=1}^{n} r_j$, even if the *"3"* is deleted.

Each of the *n* or fewer vectors in *B* is the sum of bumps of altitudes $+1$, or - 1, each having as support a union of consecutive I_k 's. We will now choose $\{\zeta_q^i\}$ so that, for each σ ,

(14)
$$
\left(\sum_{j=1}^{n} \pm \zeta^{j}\right)_{\sigma} = \sum_{i=1}^{n} \zeta^{i}_{\sigma}
$$

with each ζ_{σ}^{i} the sum of bumps with altitudes + 1 or -1. For $1 \le i \le n$, let ζ_{σ}^{i} have value 0 in all intervals I_k for which $|(\sum_{i=1}^n \pm \zeta^i)_\sigma| < n - i + 1$, and otherwise let ζ^i_{σ} have value + 1 or - 1 according as $(\sum_{i=1}^n \pm \zeta^i)_{\sigma}$ is positive or negative. Then (14) is satisfied.

If exactly m of the ζ^j 's are nonzero on I_k , then the number of arrangements of signs σ for which ζ_{σ}^{i} is nonzero on I_{k} is 2" times the probability that $n - i + 1$ is less than or equal to the absolute value of the difference between the number of successes and the number of failures in m Bernoulli events with probability $\frac{1}{2}$. This probability does not decrease by more than $\frac{1}{2}$ if m is replaced by n. Thus, if $\overline{t_i}$ is the average over σ of the number of bumps in ζ_{σ}^{i} , then it follows from (10) that

(15)
$$
\bar{t}_i < 4 \frac{{n \choose 0} + {n \choose 1} + \cdots + {n \choose \lceil \frac{1}{2}(i-1) \rceil}}{2^n} \cdot \frac{3 \sum_{i=1}^n r_i}{n^{\alpha}}.
$$

We now have $(\sum_{i=1}^n \pm x^i)_{\sigma} = \sum_{i=1}^{N(n^{\alpha})} \eta_{\sigma}^i + \sum_{i=1}^n \zeta_{\sigma}^i$. Also, there are $N(n^{\alpha})+n$ new ϕ_i 's, which we denote by ${\phi'_i(n): 1 \le i \le N(n^{\alpha})+n}$, and choose by use of (13) and (15) so as to satisfy (4). Then

$$
\sum_{i} [n \cdot \phi'_{i}(n)]^{1/\rho} \leq \sum_{i=1}^{N(n^{\alpha})} [3n \cdot \phi_{i}(n^{\alpha})]^{1/\rho}
$$

+
$$
\sum_{i=1}^{n} \left[12n \frac{{n \choose 0} + {n \choose 1} + \cdots + {n \choose \lfloor \frac{1}{2}(i-1) \rfloor}}{2^{n}n^{\alpha}} \right]^{1/\rho},
$$

=
$$
3^{1/\rho} n^{(1-\alpha)/\rho} \sum_{i=1}^{N(n^{\alpha})} [n^{\alpha} \phi_{i}(n^{\alpha})]^{1/\rho}
$$

+
$$
12^{1/\rho} n^{(1-\alpha)/\rho} \sum_{i=1}^{n} \left[\frac{{n \choose 0} + {n \choose 1} + \cdots + {n \choose \lfloor \frac{1}{2}(i-1) \rfloor}}{2^{n}} \right]^{1/\rho}
$$

The first of these summations (without its coefficient) is by hypothesis not greater than *Cn*^{α [$\frac{1}{2}$ + α (α ^{α})]. The second summation is less than $(2\pi\rho)^{\frac{1}{2}}2^{-1/\rho}n^{\frac{1}{2}}$ if $n \ge 4$, since} it is not greater than $2\sum_{k=0}^{\lfloor 1/2(n-1)\rfloor} (P_k^n)^{1/\rho}$, which (7) implies is less than $(2\pi\rho)^{\frac{1}{2}}2^{-1/\rho}n^{\frac{1}{2}}$. **Thus**

$$
\sum_i [n\phi'_i(n)]^{1/\rho} \leq 3^{1/\rho} C n^{\alpha[\frac{1}{2}+\Delta(n^{\alpha})]+(1-\alpha)/\rho} + 6^{1/\rho} (2\pi\rho)^{\frac{1}{2}} n^{\frac{1}{2}+(1-\alpha)/\rho}.
$$

LEMMA 3. Let $n > 4$ be a positive integer. Suppose C and $\{\Delta(k): 1 \leq k < n\}$ *are nonnegative numbers, and that there exist nonnegative numbers* $\{\phi_i(k)\}\$ *for each* $k < n$ which can be used in Lemma 1 to verify that, if $||x^i|| = 1$ for each j, *then*

(16)
$$
A_{\sigma} \bigg\| \left(\sum_{j=1}^{k} \pm x^{j} \right)_{\sigma} \bigg\| \leq C k^{\frac{1}{2} + \Delta(k)}.
$$

If $0 \le \alpha < 1$ and n^{α} is an integer, then there exist nonnegative numbers { $\phi_i(n)$ } *which can be used in Lemma 1 to verify that, if* $||x^i|| = 1$ *for each i, then*

$$
(17) \tA_{\sigma}\left\|\left(\sum_{j=1}^n \pm x^j\right)_{\sigma}\right\| \leq 3^{1/\rho}C n^{\alpha[\frac{1}{2}+\Delta(n^{\alpha})]+(1-\alpha)/\rho}+6^{1/\rho}(2\pi\rho)^{\frac{1}{2}} n^{\frac{1}{2}+(1-\alpha)/\rho}.
$$

PROOF. This Lemma is an immediate consequence of Lemmas 1 and 2.

THEOREM. *The space* X_p is of type 2 if $p > 2$. Moreover, for each n and any ${x': 1 \leq j \leq n}$ in X_{φ} with $||x'|| = 1$ for each j, we have

(18)
$$
A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| \leq [3^{(\rho+1)/(\rho-2)} (2e)^{1/\rho} (\frac{1}{2} \pi \rho)^{\frac{1}{2}}] n^{\frac{1}{2}}.
$$

For X_2 *and any* $\theta > 0$ *, there is an n_e such that*

(19)
$$
A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| \leq \begin{cases} n_{\theta}^{1/2} n^{\frac{1}{2}}, & \text{if } n \leq n_{\theta} \\ 6(3e n_{\theta})^{\frac{1}{2}} n^{\frac{1}{2} + \theta / [\ln(\ln n)]}, & \text{if } n > n_{\theta}. \end{cases}
$$

PROOF. $n>3$ by Assume first that $\rho > 2$. Introduce the functions β and Δ defined for

(20)
$$
\beta(n) = \frac{(1+\rho)\ln 3}{\rho \ln n} \text{ or } n^{\beta(n)} = 3^{(1+\rho)/\rho},
$$

(21)
$$
\Delta(n) = \frac{\rho}{\rho - 2} \beta(n) + \frac{1}{\rho \ln n},
$$

and $\beta(n) = \Delta(n) = 0$ if $n \le 3$. We will show that if $n \ge 4$ and if $x^i \in X_p$ with $||x^j|| = 1$ for $1 \leq j \leq n$, then

(22)
$$
A_{\sigma} \left\| \left(\sum_{i=1}^{n} \pm x^{i} \right)_{\sigma} \right\| \leq 2^{1/\rho} (\frac{1}{2} \pi \rho)^{\frac{1}{2}} n^{\frac{1}{2} + \Delta(n)}.
$$

Since $n^{\Delta(n)} = 3^{(p+1)/(p-2)} e^{1/p}$, this will establish (18) for $n \ge 4$. Since $\|(\sum_{i=1}^{n} x^{i})_{\sigma}\| \le$ n if $||x^j|| = 1$ for each j, and the right member of (18) is greater than $3n^{\frac{1}{2}}$ if $\rho > 2$, we see that (18) is valid if $n < 4$.

We will establish (22) for $n > 4$ by induction. In order to use Lemma 3 in the first step of the induction, we need to know that there exist $\{\phi_i(n)\}\$ for $n \leq 4$ which can be used in Lemma 1 to establish (22) for $n \le 4$. If we let $\phi_i(n) = 1$ for $1 \le i \le n$ and $n = 1, 2$, or 4, and let $\phi_i(3) = i^{-1}$ for $1 \le i \le 3$, then (ii) of Lemma 1 is satisfied and we need to have, for $n \leq 4$ and $p > 2$.

(23)
$$
\sum_{i=1}^{n} [n\phi_i(n)]^{1/\rho} \leq 2^{1/\rho} (\frac{1}{2}\pi\rho)^{\frac{1}{2}} n^{\frac{1}{2}+\Delta(n)}.
$$

This is satisfied for $n=1$, since $1 < 2^{1/\rho} (\frac{1}{2}\pi \rho)^{\frac{1}{2}}$; for $n=2$, since $2 \cdot 2^{1/\rho} <$ $2^{1/\rho}(\frac{1}{2}\pi\rho)^{\frac{1}{2}}2^{\frac{1}{2}}$; for $n=3$, since $3^{1/\rho}(1+2^{-1/\rho}+3^{-1/\rho}) < 2^{1/\rho}(\frac{1}{2}\pi\rho)^{\frac{1}{2}}3^{\frac{1}{2}}$ follows from $1 + 2^{-1/p} + 3^{-1/p} < 2^{1/p} (\frac{1}{2}\pi \rho)^{\frac{1}{2}}$; and for $n = 4$, since $4 \cdot 4^{1/p} < 3^{(p+1)/(p-2)} (2e)^{1/p} (\frac{1}{2}\pi \rho)^{\frac{1}{2}}$. Now suppose $n > 4$ and for each $k < n$ there exist nonnegative numbers $\{\phi_i(k)\}$ which can be used in Lemma 1 to verify that (22) is valid if n is replaced by any positive integer $k < n$. The principal technique in the proof is to choose C in (16) by letting

(24)
$$
C = 2^{1/\rho} (\frac{1}{2} \pi \rho)^{\frac{1}{2}},
$$

and then using Lemma 3 after making each exponent of n in (17) less than or equal to

$$
\frac{1}{2}+\Delta(n)-\beta(n).
$$

This will imply that (22) is satisfied, since $n^{-\beta(n)} = 3^{-1-1/\rho}$, and

$$
3^{-1-1/\rho}[3^{1/\rho}C+6^{1/\rho}(2\pi\rho)^{\frac{1}{2}}]=C.
$$

For the second exponent of n in (17) to be less than or equal to (25), we need

(26)
$$
\alpha \geq 1 + \rho [\beta(n) - \Delta(n)].
$$

For the first exponent of n in (17) to be less than or equal to (25), we need

(27)
$$
\frac{1}{2}\alpha + \frac{1-\alpha}{\rho} \leq \frac{1}{2} + \Delta(n) - \beta(n) \quad \text{if} \quad n^{\alpha} \leq 3,
$$

and

(28)
$$
\alpha \left[\frac{1}{2} + \Delta(n^{\alpha}) \right] + \frac{1 - \alpha}{\rho} \leq \frac{1}{2} + \Delta(n) - \beta(n) \quad \text{if} \quad n^{\alpha} > 3.
$$

Since $\Delta(n^{\alpha}) = \Delta(n)/\alpha$, these are equivalent, respectively, to

(29)
$$
\alpha \leq 1 + \frac{2\rho}{\rho - 2} [\Delta(n) - \beta(n)] \quad \text{if} \quad n^{\alpha} \leq 3,
$$

(30)
$$
\alpha \leq 1 - \frac{2\rho}{\rho - 2}\beta(n) \quad \text{if} \quad n^{\alpha} > 3.
$$

Since (29) is satisfied if $\alpha < 1$, the inductive proof is completed for all *n* for which α can be chosen so that $n^{\alpha} \leq 3$ and α satisfies (26). That is, for all n such that

$$
(31) \t\t n^{1+\rho(\beta(n)-\Delta(n))} \leq 3,
$$

which is true if $n \cdot n^{-2\rho\beta(n)/(\rho-2)} \leq 3$. Since $n^{\beta(n)} = 3^{(1+\rho)/\rho}$, this is satisfied if

$$
n \leq 3^{3\rho/(\rho-2)}.
$$

Now assume that $n > 3^{3p/(p-2)}$. Because

(33)
$$
n^{x+(\ln n)^{-1}} = e \cdot n^x > 1 + n^x \quad \text{if} \quad x \ge 0,
$$

there is an α that satisfies both (26) and (30) and also satisfies $0 \le \alpha < 1$ and the requirement that n^{α} be an integer, if

(34)
$$
\left[1-\frac{2\rho}{\rho-2}\beta(n)\right]-\left\{1+\rho[\beta(n)-\Delta(n)]\right\}\geq \frac{1}{\ln n},
$$

and also

$$
\frac{1}{\ln n} \leq 1 - \frac{2\rho}{\rho - 2} \beta(n).
$$

Because of (21) , (34) is an equality. Write (35) as

(36)
$$
1 + \frac{2(1+\rho)\ln 3}{\rho - 2} \leq \ln n.
$$

Since the inequality, $\ln n > \ln 3 + 2(1 + \rho)(\rho - 2)^{-1} \ln 3$, follows from $n > 3^{3\rho/(\rho-2)}$, (36) is satisfied.

This completes the proof of Theorem 1 for $\rho > 2$. Let us now consider the case $\rho = 2$. For θ an arbitrary positive number, choose n_{θ} so that

(37)
$$
\ln(\ln n_{\theta}) \ge \max\{4, 4\theta\} \text{ and } \frac{[\ln(\ln n_{\theta})]^2}{\ln n_{\theta}} \le \frac{2\theta^2}{3\ln 3}.
$$

Define $\beta(n)$ as in (20) for $n > n_{\theta}$, but with p replaced by 2. Let

(38)
$$
\Delta(n) = \frac{\theta}{\ln(\ln n)} + \beta(n) + \frac{1}{2\ln n}, \text{ if } n > n_{\theta},
$$

and let $\beta(n) = \Delta(n) = 0$ if $n \leq n_0$. Choose D so that, for $n \leq n_0$, there exist $\{\phi_i(n)\}\$ which can be used in Lemma 1 to prove that

(39)
$$
A_{\sigma} \left\| \left(\sum_{j=1}^{n} \pm x^{j} \right)_{\sigma} \right\| \leq D n^{\frac{1}{2}}, \text{ if } n \leq n_{\sigma} \text{ and } \|x^{j}\| = 1.
$$

For example, we could let $\phi_i(n) = i^{-1}$ for $i \leq n$ and note that

$$
n^{\frac{1}{2}}\sum_{1}^{n} i^{-\frac{1}{2}} < 2n,
$$

to see that D could be $2n_e^{1/2}$. We will show that, if each x^j , $1 \le j \le n$, is in X_2 with $||x'|| = 1$, then, for all $n > n_{\theta}$,

(40)
$$
A_{\sigma}\left\|\left(\sum_{j=1}^{n} \pm x^{j}\right)_{\sigma}\right\| \leq Dn^{\frac{1}{2}+\Delta(n)}.
$$

Since $n^{\Delta(n)} = 3(3e)^{\frac{1}{2}} \cdot n^{\frac{\theta}{\lceil(n(n-n))\rceil}}$, this implies (19) for $n > n_{\theta}$. We will establish (40) by induction. Suppose $n > n_{\theta}$ and there exist nonnegative numbers $\{\phi_i(k)\}\$ for each $k < n$ which can be used in Lemma 1 to verify (40) if n is replaced by any $k < n$. The principal technique in the proof is to use Lemma 3 after making each exponent of n in (17) less than or equal to

$$
\frac{1}{2}+\Delta(n)-\beta(n).
$$

This will imply that (40) is satisfied, since $n^{-\beta(n)} = 3^{-3/2}$ and (37) implies

$$
3^{-3/2} [3^{\frac{1}{2}}D + 6^{\frac{1}{2}} (4\pi)^{\frac{1}{2}}] < D \quad \text{if} \quad D = 2n_{\theta}^{1/2}.
$$

For the second exponent of n in (17) to be less than or equal to (41), we need

(42)
$$
\alpha \geq 1 + 2[\beta(n) - \Delta(n)].
$$

For the first exponent of n in (17) to be less than or equal to (41), we need (27) and (28) with $\rho = 2$ and 3 replaced by n_{θ} . Since $\Delta(n^{\alpha})$ is equal to $\theta / [\ln \alpha +$ $\ln(\ln n)$ + $[\beta(n) + (2 \ln n)^{-1}]/\alpha$, these are equivalent to

(43)
$$
0 \leq \Delta(n) - \beta(n), \text{ if } n^{\alpha} \leq n_{\theta},
$$

(44)
$$
\frac{\alpha \theta}{\ln \alpha + \ln(\ln n)} + \beta(n) \leq \frac{\theta}{\ln(\ln n)}, \quad \text{if} \quad n^{\alpha} > n_{\theta}
$$

Since $\ln(\ln n) > 0$, (43) is valid for all *n*. Thus the inductive proof is completed if α can be chosen so that (42) and (44) are satisfied, whether or not $n^{\alpha} \leq n_{\theta}$. Inequality (42) is equivalent to

$$
\alpha \geq 1 - \frac{2\theta}{\ln(\ln n)} - \frac{1}{\ln n},
$$

and the right member of this inequality is positive and greater than $\frac{1}{2} - 1/(\ln n)$ because of (37). Thus there is an α with $0 \le \alpha < 1$ which satisfies (42), (44) and the requirement that n^{α} be an integer, if (44) is satisfied for all α between

$$
1-\frac{2\theta}{\ln(\ln n)}-\frac{1}{\ln n}\quad\text{and}\quad 1-\frac{2\theta}{\ln(\ln n)}.
$$

For α in this interval, the left member of (44) increases with α , since $\alpha > \frac{1}{2} - 1/(\ln n) > e/(\ln n)$, so it is sufficient to have

$$
\frac{\{1-2\theta [\ln (\ln n)]^{-1}\}\theta}{-4\theta [\ln (\ln n)]^{-1}+\ln (\ln n)}+\frac{3(\ln 3)}{2(\ln 2)}\leq \frac{\theta}{\ln (\ln n)}.
$$

This can be proved by using the following inequality, which follows from (37):

$$
\frac{3(\ln 3)}{2(\ln 2)} < \theta^2 \left[\frac{2-4[\ln{(\ln{n})}]^{-1}}{[\ln{(\ln{n})}]^2} \right].
$$

REFERENCES

1. E. Dubinsky, A. PeJ'czyfiski and H. P. Rosenthal, *On Banach spaces X for which* $\Pi_2(\mathcal{L}_\infty, X) = B(\mathcal{L}_\infty, X)$, Studia Math. 44 (1972), 617-648.

2. W. J. Davis and J. Lindenstrauss, *The l~ problem and degrees of non-reflexivity* (II), Studia Math. 58 (1976), 179-196.

3. J. Hoffman-Jcrgensen, *Sums of independent Banach-space-valued random variables,* Aarhus Universitet Preprint Series, No. 15, 1972-73.

4. R. C. James, *A nonreflexive Banach space that is uniformly nonoctahedral,* Israel J. Math. 18 (1974), 145-155.

5. R. C. James and J. Lindenstrauss, The *octahedral problem for Banach spaces,* Proceedings of the Seminar on Random Series, Convex Sets, and Geometry of Banach Spaces, Aarhus (Denmark), 1974.

6. S. Kwapiefi, *Isomorphic characterization of inner-product spaces by orthogonal series with vector-valued coefficients,* Studia Math. 44 (1972), 583-595.

7. B. Maurey, *Type et cotype dans les espaces munis de structures locales inconditionnelles,* Seminaire Maurey-Schwartz, 1973-74.

8. B. Maurey and G. Pisier, *Série de variables aléatoires indépendantes et propriétés* géometriques des espaces de Banach, Studia Math. 58 (1976), 45-90.

9. G. Pisier, "Type" des espaces normés, Seminaire Maurey-Schwartz, 1973-74.

10. G. Pisier, *Martingales with values in uniformly convex spaces,* Israel J. Math. 20 (1975), 326-350.

CLAREMONT GRADUATE SCHOOL CLAREMONT, CALIF. 91711 USA

AND

INSTITUTE FOR ADVANCED STUDIES

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL